Curve sampling and geometric conditional simulation
نویسنده
چکیده
منابع مشابه
MCMC curve sampling and geometric conditional simulation
We present an algorithm to generate samples from probability distributions on the space of curves. Traditional curve evolution methods use gradient descent to find a local minimum of a specified energy functional. Here, we view the energy functional as a negative log probability distribution and sample from it using a Markov chain Monte Carlo (MCMC) algorithm. We define a proposal distribution ...
متن کاملEstimation of Small Failure Probabilities in High Dimensions by Adaptive Linked Importance Sampling
Abstaract. A novel simulation approach, called Adaptive Linked Importance Sampling (ALIS), is proposed to compute small failure probabilities encountered in high-dimensional reliability analysis of engineering systems. It was shown by Au and Beck (2003) that Importance Sampling (IS) does generally not work in high dimensions. A geometric understanding of why this is true when one uses a fixed i...
متن کاملImproved Algorithms for Rare Event Simulation with Heavy Tails
The estimation of P(Sn > u) by simulation, where Sn is the sum of independent, identically distributed random varibles Y1, . . . , Yn, is of importance inmany applications. We propose two simulation estimators based upon the identity P(Sn > u) = nP(Sn > u, Mn = Yn), where Mn = max(Y1, . . . , Yn). One estimator uses importance sampling (for Yn only), and the other uses conditional Monte Carlo c...
متن کاملImportance Sampling for Failure Probabilities in Computing and Data Transmission
In this paper we study efficient simulation algorithms for estimating P(X > x), whereX is the total time of a job with ideal time T that needs to be restarted after a failure. The main tool is importance sampling, where a good importance distribution is identified via an asymptotic description of the conditional distribution of T given X > x. If T ≡ t is constant, the problem reduces to the eff...
متن کاملEfficient Simulation of a Random Knockout Tournament
We consider the problem of using simulation to efficiently estimate the win probabilities for participants in a general random knockout tournament. Both of our proposed estimators, one based on the notion of “observed survivals” and the other based on conditional expectation and post-stratification, are highly effective in terms of variance reduction when compared to the raw simulation estimato...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008